Math Learning Log
I’m revisiting and expanding my math foundations, starting with core notation and concepts I want to be fluent with.
Strategy
- Work through each section until the symbols feel natural.
- Use examples in my notes (not just memorizing meanings).
- Check items off once I can both recognize and use them in context.
Basic arithmetic & relations
=– equals≠– not equal≈– approximately equal≡– identically equal / congruent (depends on context)<– less than>– greater than≤– less than or equal to≥– greater than or equal to+– plus−– minus±– plus or minus×– times / multiply·– dot multiply (also used for dot product)÷or/– divide^– power / exponent (e.g.x^2)√– square root∛– cube root
Algebra & functions
x, y, z– generic variablesa, b, c, k– generic constantsf(x), g(x)– functions ofxf: ℝ → ℝ– “maps to” arrow (function from reals to reals)∘– function composition (f ∘ g)f⁻¹– inverse function off( ... )– grouping / parentheses[ ... ]– grouping / intervals / indexing{ ... }– set / collection of things:or|– “such that” (in set notation or conditions)
Sets & number systems
∈– “is an element of” (x ∈ A)∉– “is not an element of”⊂– proper subset⊆– subset (possibly equal)⊃– proper superset⊇– superset (possibly equal)∅– empty set∪– union (A ∪ B)∩– intersection (A ∩ B)ℕ– natural numbersℤ– integersℚ– rational numbersℝ– real numbersℂ– complex numbers
Intervals
(a, b)– open interval (a < x < b)[a, b]– closed interval (a ≤ x ≤ b)(a, b]– half-open interval[a, b)– half-open interval
Exponents & logs
a^b–ato the powerbe– Euler’s number (~2.718)ln(x)– natural logarithm (basee)log(x)– logarithm (base depends on context)exp(x)–e^x(exponential function notation)
Limits & calculus core
lim– limitx → a– “x tends to a”Δx– small change inx(discrete)d/dx– derivative with respect toxdy/dx– derivative ofywith respect toxdf/dx– derivative offwith respect tox∂/∂x– partial derivative with respect tox∫– integral (indefinite/definite depending on context)∫_a^b– integral fromatobdx– “with respect to x” (integration/derivative variable)
Summation & products
Σ– summation sign∑_{i=1}^n– sum fromi = 1tonΠ– product sign∏_{i=1}^n– product fromi = 1ton
Logic & quantifiers
¬– not (negation)∧– and∨– or⇒– implies⇔– if and only if (iff, equivalence)∀– “for all”∃– “there exists”⊤– true⊥– false / contradiction
Probability & statistics
P(A)– probability of eventAP(A | B)– probability ofAgivenBE[X]– expected valueVar(X)– varianceCov(X,Y)– covarianceμ– population meanσ– standard deviationσ²– varianceX ~ N(μ, σ²)– “X is distributed as normal with mean μ and variance σ²”
Linear algebra & vectors
⃗vor v – vector‖v‖– norm / length of vectorvA– matrix (often uppercase)Aᵀ– transpose ofAdet(A)or|A|– determinant of matrixAI– identity matrix0– zero vector or zero matrix (context-dependent)
Asymptotics / CS
O(n)– big-O (upper bound on growth rate)Θ(n)– theta (tight bound)Ω(n)– omega (lower bound)o(n)– little-o (strictly smaller order)≪– “much less than” (informal)
Other common squiggles
∝– proportional to∞– infinityargmax– value where a function reaches its maximumargmin– value where a function reaches its minimum⊕– direct sum / XOR (context-dependent)⊗– tensor / Kronecker product (context-dependent)∴– therefore∵– because
Notes
I’ll use this page to:
- Add quick examples for symbols as I practice
- Write down any confusions and how I resolved them
- Track my comfort level over time (by checking items off)